Coevolution of Nearest Neighbor Classifiers
نویسندگان
چکیده
This paper presents experiments of Nearest Neighbor (NN) classifier design using different evolutionary computation methods. Through multi-objective and co-evolution techniques, it combines genetic algorithms and genetic programming to both select NN prototypes and design a neighborhood proximity measure, in order to produce a more efficient and robust classifier. The proposed approach is compared with the standard NN classifier, with and without the use of classic prototype selection methods, and classic data normalization. Results on both synthetic and real data sets show that the proposed methodology performs as well or better than other methods on all tested data sets.
منابع مشابه
Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملLazy Classifiers Using P-trees
Lazy classifiers store all of the training samples and do not build a classifier until a new sample needs to be classified. It differs from eager classifiers, such as decision tree induction, which build a general model (such as a decision tree) before receiving new samples. K-nearest neighbor (KNN) classification is a typical lazy classifier. Given a set of training data, a knearest neighbor c...
متن کاملDiagnosis of Tempromandibular Disorders Using Local Binary Patterns
Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment.Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal...
متن کاملMultiple Views in Ensembles of Nearest Neighbor Classifiers
Multi-view classification is a machine learning methodology when patterns or objects of interest are represented by a set of different views (sets of features) rather than the union of all views. In this paper, multiple views are employed in ensembles of nearest neighbor classifiers where they demonstrate promising results in classifying a challenging data set of protein folds. In particular, u...
متن کاملA Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization
Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IJPRAI
دوره 21 شماره
صفحات -
تاریخ انتشار 2007