Coevolution of Nearest Neighbor Classifiers

نویسندگان

  • Christian Gagné
  • Marc Parizeau
چکیده

This paper presents experiments of Nearest Neighbor (NN) classifier design using different evolutionary computation methods. Through multi-objective and co-evolution techniques, it combines genetic algorithms and genetic programming to both select NN prototypes and design a neighborhood proximity measure, in order to produce a more efficient and robust classifier. The proposed approach is compared with the standard NN classifier, with and without the use of classic prototype selection methods, and classic data normalization. Results on both synthetic and real data sets show that the proposed methodology performs as well or better than other methods on all tested data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor

Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems.  In this study, we d...

متن کامل

Lazy Classifiers Using P-trees

Lazy classifiers store all of the training samples and do not build a classifier until a new sample needs to be classified. It differs from eager classifiers, such as decision tree induction, which build a general model (such as a decision tree) before receiving new samples. K-nearest neighbor (KNN) classification is a typical lazy classifier. Given a set of training data, a knearest neighbor c...

متن کامل

Diagnosis of Tempromandibular Disorders Using Local Binary Patterns

Background: Temporomandibular joint disorder (TMD) might be manifested as structural changes in bone through modification, adaptation or direct destruction. We propose to use Local Binary Pattern (LBP) characteristics and histogram-oriented gradients on the recorded images as a diagnostic tool in TMD assessment.Material and Methods: CBCT images of 66 patients (132 joints) with TMD and 66 normal...

متن کامل

Multiple Views in Ensembles of Nearest Neighbor Classifiers

Multi-view classification is a machine learning methodology when patterns or objects of interest are represented by a set of different views (sets of features) rather than the union of all views. In this paper, multiple views are employed in ensembles of nearest neighbor classifiers where they demonstrate promising results in classifying a challenging data set of protein folds. In particular, u...

متن کامل

A Classification Method for E-mail Spam Using a Hybrid Approach for Feature Selection Optimization

Spam is an unwanted email that is harmful to communications around the world. Spam leads to a growing problem in a personal email, so it would be essential to detect it. Machine learning is very useful to solve this problem as it shows good results in order to learn all the requisite patterns for classification due to its adaptive existence. Nonetheless, in spam detection, there are a large num...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IJPRAI

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2007